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Abstract
We introduce some multiple integrals that are expected to have the same
singularities as the singularities of the n-particle contributions χ(n) to the
susceptibility of the square lattice Ising model. We find the Fuchsian linear
differential equation satisfied by these multiple integrals for n = 1, 2, 3, 4
and only modulo some primes for n = 5 and 6, thus providing a large set
of (possible) new singularities of χ(n). We discuss the singularity structure
for these multiple integrals by solving the Landau conditions. We find that
the singularities of the associated ODEs identify (up to n = 6) with the
leading pinch Landau singularities. The second remarkable obtained feature
is that the singularities of the ODEs associated with the multiple integrals
reduce to the singularities of the ODEs associated with a finite number of one-
dimensional integrals. Among the singularities found, we underline the fact that
the quadratic polynomial condition 1 + 3w + 4w2 = 0, that occurs in the linear
differential equation of χ(3), actually corresponds to a remarkable property of
selected elliptic curves, namely the occurrence of complex multiplication. The
interpretation of complex multiplication for elliptic curves as complex fixed
points of the selected generators of the renormalization group, namely isogenies
of elliptic curves, is sketched. Most of the other singularities occurring in
our multiple integrals are not related to complex multiplication situations,
suggesting an interpretation in terms of (motivic) mathematical structures
beyond the theory of elliptic curves.
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1. Introduction

The susceptibility χ of the square lattice Ising model has been shown by Wu, McCoy, Tracy
and Barouch [1] to be expressible as an infinite sum of holomorphic functions, given as
multiple integrals, denoted by χ(n), that is kT χ = ∑

χ(n). Nickel found [2, 3] that each of
these χ(n)’s is singular on a set of points located on the unit circle |s| = |sinh(2K)| = 1,
where K = J/kT is the usual Ising model temperature variable.

These singularities are located at solution points of the following equations:

1

w
= 2

(
s +

1

s

)
= uk +

1

uk
+ um +

1

um

u2n+1 = 1, −n � m, k � n.

(1)

From now on, we will call these singularities of the ‘Nickelian type’ or simply ‘Nickelian
singularities’. The accumulation of this infinite set of singularities of the higher-particle
components of χ(s) on the unit circle |s| = 1 leads, in the absence of mutual cancellation, to
some consequences regarding the non-holonomic (non D-finite) character of the susceptibility,
possibly building a natural boundary for χ(s). However, it should be noted that new
singularities that are not of the ‘Nickelian type’ were discovered as singularities of the Fuchsian
linear differential equation associated [4–6] with χ(3) and as singularities of χ(3) itself [7] but
seen as a function of s. They correspond to the quadratic polynomial 1 + 3w + 4w2 where
2w = s/(1 + s2). In contrast with this situation, the Fuchsian linear differential equation,
associated [8] with χ(4), does not provide any new singularities.

Some remarkable Russian-doll structure as well as direct sum decompositions were
found for the corresponding linear differential operators for χ(3) and χ(4). In order to
understand the ‘true nature’ of the susceptibility of the square lattice Ising model, it is of
fundamental importance to have a better understanding of the singularity structure of the
n-particle contributions χ(n) and also of the mathematical structures associated with these
χ(n), namely the infinite set of (probably Fuchsian) linear differential equations associated
with these holonomic functions. Finding more Fuchsian linear differential equations having
χ(n)’s as solutions, beyond those already found [4, 8] for χ(3) and χ(4), probably requires the
performance of a large set of analytical, mathematical and computer programming ‘tours-de-
force’.

As an alternative, and in order to bypass this ‘temporary’ obstruction, we have developed,
in parallel, a new strategy.

We have introduced [7] some single (or multiple) ‘model’ integrals as an ‘ersatz’ for χ(n)’s
as far as the locus of the singularities is concerned. χ(n)’s are defined by (n − 1)-dimensional
integrals [3, 9, 10] (omitting the prefactor4)

χ̃ (n) = (2w)n

n!

n−1∏
j=1

∫ 2π

0

dφj

2π

(
n∏

j=1

yj

)
R(n)(G(n))2 (2)

where

G(n) =
(

n∏
j=1

xj

)(n−1)/2 ∏
1�i<j�n

2 sin ((φi − φj )/2)

1 − xixj

(3)

and

R(n) = 1 +
∏n

i=1 xi

1 − ∏n
i=1 xi

(4)

4 The prefactor reads in the variable s, (1 − s4)1/4/s for T > Tc and (1 − s−4)1/4 for T < Tc .
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with

xi = 2w

1 − 2w cos(φi) +
√

(1 − 2w cos(φi))
2 − 4w2

, (5)

yi = 1√
(1 − 2w cos(φi))

2 − 4w2
,

n∑
j=1

φj = 0. (6)

The two families of integrals we considered in [7] are very rough approximations of the
integrals (2). For the first family5, we considered the n-fold integrals corresponding to the
product of (the square6 of the) yi’s, integrated over the whole domain of integration of φi (thus
getting rid of the factors G(n) and R(n)). Here, we found a subset of singularities occurring in
χ(n) as well as the quadratic polynomial condition 1 + 3w + 4w2 = 0.

For the second family, we discarded the factor G(n) and the product of yi’s, and we
restricted the domain of integration to the principal diagonal of the angles φi (φ1 = φ2 =
· · · = φn−1). These simple integrals (over a single variable) were denoted [7] by �

(n)
D :

�
(n)
D = − 1

n!
+

2

n!

∫ 2π

0

dφ

2π

1

1 − xn−1(φ)x((n − 1)φ)
(7)

where x(φ) is given by (5).
Remarkably these very simple integrals both reproduce all the singularities, discussed by

Nickel [2, 3], as well as the quadratic roots of 1 + 3w + 4w2 = 0 found [4, 5] for the linear
ODE of χ(3). One should however note that, in contrast with χ(n), no Russian-doll or direct
sum decomposition structure is found for the linear differential operators corresponding to
these �

(n)
D .

Another approach has been introduced as a simplification of the susceptibility of the Ising
model by considering a magnetic field restricted to one diagonal of the square lattice [11]. For
this ‘diagonal susceptibility’ model [11], we benefited from the form factor decomposition
of the diagonal two-point correlations C(N,N), that has been recently presented [12], and
subsequently proved by Lyberg and McCoy [13]. The corresponding n-fold integrals χ

(n)
d were

found to exhibit remarkable direct sum structures inherited from the direct sum structures of
the form factor [11, 12]. The linear differential operators of the form factor [12] being closely
linked to the second-order differential operator LE (resp. LK ) of the complete elliptic integrals
E (resp. K), this ‘diagonal susceptibility’ model [11] is closely linked to the elliptic curves
of the two-dimensional Ising model. By way of contrast, we note that the singularities of the
linear ODEs for these n-fold integrals [11] χ

(n)
d are quite elementary (consisting of only nth

roots of unity) in comparison with the singularities we encounter for the integrals on a single
variable (7).

These two approaches corresponding to two different sets of n-fold integrals of the
Ising class [14] are complementary: (7) is more dedicated to reproduce the non-trivial head
polynomials encoding the location of the singularities of χ(n), but fails to reproduce some
remarkable (Russian-doll, direct sum decomposition) algebraico-differential structures of the
corresponding linear differential operators, while the other one [11] preserves these non-trivial
structures of the corresponding linear differential operators but provides a poorer representation
of the location of the singularities (nth roots of unity).

5 Denoted by Y (n)(w) in [7].
6 Surprisingly, the integrand with (

∏n
j=1 yj )

2 yields second-order linear differential equations [7] and, consequently,
we have been able to totally decipher the corresponding singularity structure. By way of contrast the integrand with
the simple product (

∏n
j=1 yj ) yields linear differential equations of higher order, but with identical singularities [7].
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In this paper, we return to the integrals (2) where, this time, the natural next step is to
consider the following family of n-fold integrals

�
(n)
H = 1

n!

n−1∏
j=1

∫ 2π

0

dφj

2π

(
n∏

j=1

yj

)
1 +

∏n
i=1 xi

1 − ∏n
i=1 xi

(8)

which amounts to getting rid of the (fermionic) factor (G(n))2 in the n-fold integral (2). This
family is as close as possible to (2), for which we know that finding the corresponding linear
differential ODEs is a huge task. The idea here is that the methods and techniques we have
developed [4, 5] for series expansions calculations of χ(3) and χ(4) seem to indicate that the
quite involved fermionic term (G(n))2 in the integrand of (2) should not impact greatly on the
location of singularities of these n-fold integrals (2). With this simplification in the integrand
of (2) we expect to retain much exact information about the location of the singularities of
the original Ising problem. However, we certainly do not expect to recover from the n-fold
integrals (8) the local singular behaviour (exponents, amplitudes of singularities). Getting
rid of the (fermionic) factor (G(n))2 are we moving away from the elliptic curves of the two-
dimensional Ising model? Could it be possible that we lose the strong (Russian-doll, direct
sum decomposition) algebraico-differential structures of the corresponding linear differential
operators inherited from the second-order differential operator LE (resp. LK ) of the complete
elliptic integrals E (resp. K) but keep some characterization of elliptic curves through more
‘primitive’ (universal) features of these n-fold integral like the location of their singularities?

In the following, we give the expressions of �
(1)
H ,�

(2)
H and the Fuchsian linear differential

equations for �
(n)
H for n = 3 and n = 4. For n = 5, 6, the computation (linear ODE search of

a series) becomes much harder. Consequently, we use a modulo prime method to obtain the
form of the corresponding linear ODE with totally explicit singularity structure. These results
provide a large set of ‘candidate singularities’ for χ(n). From the resolution of the Landau
conditions [7] for (8), we show that the singularities of (the linear ODEs of) these multiple
integrals actually reduce to the union of the singularities of (the linear ODEs of) a set of one-
dimensional integrals. We discuss the mathematical, as well as physical, interpretation of
these new singularities. In particular, we will see that they correspond to pinched Landau-like
singularities as previously noticed by Nickel [15]. Among all these polynomial singularities,
the quadratic numbers 1 + 3w + 4w2 = 0 are very special. We will show that these selected
quadratic numbers are related to complex multiplication for the elliptic curves parametrizing
the square lattice Ising model.

The paper is organized as follows. Section 2 presents the multidimensional integrals �
(n)
H

and the singularities of the corresponding linear ODE for n = 3, . . . , 6 that we compare with
the singularities obtained from the Landau conditions. We show that the set of singularities
associated with the ODEs of the multiple integrals �

(n)
H reduces to the singularities of the

ODEs associated with a finite number of one-dimensional integrals. Section 3 deals with the
complex multiplication for the elliptic curves related to the singularities given by the zeros of
the quadratic polynomial 1 + 3w + 4w2 = 0. Our conclusions are given in section 4.

In this paper, most of the results will be, for simplicity reasons, given in terms of the
self-dual variable w = s/(1 + s2)/2 which is a canonical one for the n-fold integrals (2), (5)
and (6). Due to a possible natural boundary for the susceptibility on the unit circle |s| = 1
in the s-complex plane, and the Kramers–Wannier symmetry breaking between odd and even
values of n in χ(n), the figures showing the positions of the singularities are given in the s
variable. The variable s is closely linked to the modulus k of the elliptic parametrization of the
Ising model. We use the variable k in section 3 and appendix G to underline questions linked
to the occurrence of elliptic curves.
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2. The singularities of the linear ODE for Φ(n)
H

For the first two values of n, one obtains

�
(1)
H = 1

1 − 4w
(9)

and

�
(2)
H = 1

2(1 − 16w2)
2F1(1/2,−1/2; 1; 16w2). (10)

For n � 3, the series coefficients of the multiple integrals �
(n)
H are obtained by expanding

in the variables xi and performing the integration (see appendix A). One obtains

�
(n)
H = 1

n!

∞∑
k=0

∞∑
p=0

(2 − δk,0)(2 − δp,0)w
n(k+p)an(k, p) (11)

where a(k, p) is a 4F3 hypergeometric series dependent on w.
The advantage of using these simplified integrals (8) instead of the original ones (2) is

twofold.
Using (11) the series generation is straightforward compared to the complexity related to

χ(n). As an illustration note that on a desk computer, �
(n)
H are generated up to w200 in less

than 10 s CPU time for all values of n, while for the simplest case of χ(n), namely χ(3), it
took 3 min to generate the series up to w200. This difference between �

(n)
H and χ(n) increases

rapidly with increasing n and increasing number of generated terms. We note that for the �
(n)
H

quantities and for a fixed order the CPU time is decreasing7 with increasing n. For χ(n) the
opposite is the case.

The second point is that, for a given n, the linear ODE can be found with less terms in
the series compared to the linear ODE for χ(n). Indeed for χ(3), 360 terms were needed while
150 terms were enough for �

(3)
H . The same feature holds for χ(4) and �

(4)
H (185 terms for χ(4)

and 56 terms8 for �
(4)
H ).

With the fully integrated sum (11), a sufficient number of terms is generated to obtain
the linear differential equations. We succeeded in obtaining the linear differential equations,
respectively of minimal order five and six, corresponding to �

(3)
H and �

(4)
H . These linear ODEs

are given in appendix B.
For �

(n)
H (n � 5), the calculations, in order to get the linear ODEs, become really

huge9. For this reason, we introduce a modular strategy which amounts to generating long
series modulo a prime and then deducing the ODE modulo that prime. Note that the ODE
of minimal order is not necessarily the optimal one, i.e., an ODE of order higher than the
minimal order may require fewer terms in the series expansion to be found. We have already
encountered such a situation [8, 11]. For �

(5)
H (resp. �

(6)
H ), the linear ODE of minimal order is

of order 17 (resp. 27) and needs 8471 (resp. 9272) terms in the series expansion to be found.
Actually, for �

(5)
H (resp. �

(6)
H ), we have found the corresponding linear ODEs of order 28

(resp. 42) with only 2208 (resp. 1838) terms from which we have deduced the minimal ones.
The form of these two minimal order linear ODEs obtained modulo a prime is sketched in

appendix B. In particular, the singularities (given by the roots of the head polynomial in front
of the highest order derivative) are given with the corresponding multiplicity in appendix B.
Some details about the ODE search are also given in appendix B.

7 This can be seen from the series expansion (11). Denoting R0 by the fixed order, one has n(p + k) � R0, while the
CPU time for the series generation of an(k, p) is not strongly dependent on n.
8 From now on, for even n, the number of terms stands for the number of terms in the variable x = w2.
9 Except the generation of long series which remains reasonable.
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We have also obtained very long series (20 000 coefficients) modulo a prime for �
(7)
H ,

but, unfortunately, this has not been sufficient to identify the linear ODE (mod prime) up to
order 100.

The singularities of the linear ODE for the first �(n)
H are respectively zeros of the following

polynomials (besides w = ∞):

n = 3, w(1 − 16w2)(1 − w)(1 + 2w)(1 + 3w + 4w2),

n = 4, w(1 − 16w2)(1 − 4w2),

n = 5, w(1 − 16w2)(1 − w2)(1 + 2w)(1 + 3w + 4w2)
(12)

(1 − 3w + w2)(1 + 2w − 4w2)(1 + 4w + 8w2)

(1 − 7w + 5w2 − 4w3)(1 − w − 3w2 + 4w3)

(1 + 8w + 20w2 + 15w3 + 4w4),

n = 6, w(1 − 16w2)(1 − 4w2)(1 − w2)(1 − 25w2)

(1 − 9w2)(1 + 3w + 4w2)(1 − 3w + 4w2) (13)

(1 − 10w2 + 29w4).

For n = 7 and n = 8, besides modulo primes series calculations described above, we
also generated very long series from which we obtained in floating point form the polynomials
given in appendix C (using generalized differential Padé methods).

If we compare the singularities for �
(n)
H to those obtained with the ‘diagonal model10’

presented in [7], i.e. �
(n)
D , one sees that the singularities of the linear ODE for the ‘diagonal

model’ are identical to those of the linear ODE of �
(n)
H for n = 3, 4 (and are a proper subset

to those of �
(n)
H for n = 5, 6). The additional singularities for n = 5, 6 are zeros of the

polynomials:

n = 5, (1 + 3w + 4w2)(1 + 4w + 8w2)(1 − 7w + 5w2 − 4w3),

n = 6, (1 + 3w + 4w2)(1 − 3w + 4w2)(1 − 25w2).

For n = 7, the zeros of the following polynomials (among others) are singularities which are
not of Nickel’s type (1) and do not occur for �

(n)
D :

1 + 8w + 15w2 − 21w3 − 60w4 + 16w5 + 96w6 + 64w7,

1 − 4w − 16w2 − 48w3 + 32w4 − 128w5.

The linear ODEs of the multiple integrals �
(n)
H thus display additional singularities for

n = 5, 6 and n = 7 (n = 8 see below) compared to the linear ODE of the single integrals �
(n)
D .

We found it remarkable that the linear ODEs for the integrals �
(n)
D display all the Nickelian

singularities, as well as the new quadratic numbers 1 + 3w + 4w2 = 0 found for χ(3). It is thus
interesting to see how the singularities for �

(n)
D are included in the singularities for �

(n)
H and

whether the new (with respect to �
(n)
D ) singularities can be given by one-dimensional integrals

similar to �
(n)
D . Let us mention that the singularities of the linear ODE for �

(3)
H (respectively

�
(4)
H ) are remarkably also the singularities of the linear ODE for �

(5)
H (respectively �

(6)
H ). In

the following, we will show how this comes about and how it generalizes. For this, we solve
in the following the Landau conditions for the n-fold integrals (8).

10 Not to be confused with the ‘diagonal susceptibility’ and the corresponding [11] n-fold integrals χ
(n)
d .
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2.1. Landau conditions for �
(n)
H

The Landau conditions [7] amount to carrying out algebraic calculations [7] on the integrand
(8) to get singularities of these n-fold integrals.

We remind the reader that the Landau conditions [7] are necessary conditions for
singularities to be singularities of the integral representation itself. In a previous paper
[7], we have shown for particular integral representations belonging to the Ising class integrals
[14] that in fact the solutions of the Landau conditions identify for specific11 configurations
(see below) with the singularities of the ODE associated with the quantity under consideration.
As we will see in the following, here also, the singularities obtained by the Landau conditions
for (8) are the singularities of the corresponding linear ODEs.

In what follows we use the following integral representation [1, 2]:

yjx
n
j =

∫ 2π

0

dψj

2π

exp(inψj )

1 − 2w(cos(φj ) + cos(ψj ))
. (14)

Defining

D(φj , ψj ) = 1 − 2w(cos(φj ) + cos(ψj )), (15)

the integral �
(n)
H (see its expansion (A.1) in appendix A) becomes

�
(n)
H = 1

n!

∫ 2π

0

n∏
j=1

dφj

2π

dψj

2π
D−1(φj , ψj )δ


 n∑

j=1

φj


 δ


 n∑

j=1

ψj


 , (16)

where the Dirac delta’s are introduced to take care of the conditions
n∑

j=1

φj = 0,

n∑
j=1

ψj = 0 mod 2π (17)

on both the angles φj and the auxiliary angles ψj .
The Landau conditions [16, 17] can easily be written [7] as

αjD(φj , ψj ) = 0, j = 1, . . . , n, (18)

βjφj = 0, γjψj = 0, j = 1, . . . , n − 1, (19)

αj sin(φj ) − αn sin(φn) + βj = 0, j = 1, . . . n − 1, (20)

αj sin(ψj ) − αn sin(ψn) + γj = 0, j = 1, . . . , n − 1 (21)

together with (17). The Landau singularities are obtained by solving these equations12 in all
the unknowns, where the Lagrange multipliers αj , βj , γj should not all be equal to zero.

In this paper, our aim is not to find all the solutions of the above equations but to show
that the singularities of the linear ODE for �

(n)
H are the solutions of the Landau conditions.

Furthermore, in working out various Ising class integrals [14] and the two models of [7] (see
appendix D), we remarked that the singularities of the linear ODE are, in fact, included in a
particular ‘configuration’. What we mean by ‘configuration’ is the set of values (equal to zero
or not) of the parameters αj , βj , γj .

The ‘configuration’ we consider

αj �= 0, βj = γj = 0, (22)

11 In that respect one must recall the notion of leading singularities in contrast with the subleading singularities (see
p 54 in [16]).
12 Note that conditions (19), βj φj = 0, γjψj = 0, j = 1, . . . , n − 1, have to be considered in the general Landau
conditions. They do not occur if one restricts oneself to pinch singularities.
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corresponds to pinch singularities on the manifolds D(φj , ψj ) = 0. One may also be
convinced to take βj = γj = 0, since the integrand is periodic [54] in φj and ψj .

Let us stress that the configuration with all the Lagrange multipliers of the singularity
manifolds D(φ,ψ) different from zero (αj �= 0, for any j ) leads to the so-called leading
Landau singularities following the terminology of p 54 of [16].

The Landau conditions become

1 − 2w(cos(φj ) + cos(ψj )) = 0, j = 1, . . . , n, (23)

αj sin(φj ) − αn sin(φn) = 0, j = 1, . . . , n − 1, (24)

αj sin(ψj ) − αn sin(ψn) = 0, j = 1, . . . , n − 1. (25)

and
n∑

j=1

φj = 0,

n∑
j=1

ψj = 0 mod 2π. (26)

The Landau singularities are the solutions of these conditions (see appendix E for details).
Note that the first three conditions (23)–(25) are invariant under transformation

w −→ −w, φj −→ φj + π, ψj −→ ψj + π, (27)

but the Landau conditions (23)–(25) together with (26) are invariant under transformation
(27) if and only if n is even. This distinction between even and odd n (corresponding to the
symmetry breaking of w ↔ −w) is reminiscent of the distinction between even and odd n for
χ(n) associated with the distinction between low and high temperature regimes.

The Landau conditions yield two families of singularities expressed in terms of Chebyshev
polynomials of the first and second kinds. The first family reads

T2p1(1/2w + 1) = Tn−2p1−2p2(1/2w − 1),

0 � p1 � [n/2], 0 � p2 � [n/2] − p1.
(28)

The second family is given by the elimination of z from

Tn1(z) − Tn2

(
4w − z

1 − 4wz

)
= 0,

Tn1

(
1

2w
− z

)
− Tn2

(
1

2w
− 4w − z

1 − 4wz

)
= 0, (29)

Un2−1(z)Un1−1

(
1

2w
− 4w − z

1 − 4wz

)
− Un2−1

(
1

2w
− z

)
Un1−1

(
4w − z

1 − 4wz

)
= 0

with

n1 = p1, n2 = n − p1 − 2p2, (30)

0 � p1 � n, 0 � p2 � [(n − p1)/2]. (31)

One recognizes in the first set of equation (28) a generalization of the singularities given
by Nickel [15] for the pinch singularities coming from the product of yj ’s and also derived for
our multiple integral denoted by Y (n) in [7]. These have been written as [7, 15]

Tk(1/2w + 1) = Tn−k(1/2w − 1). (32)

Note that, comparatively to (28), the integer k should be even13.

13 This is a consequence of (23)–(26) yielding kπ = 0 mod 2π (see appendix E.1).
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Figure 1. First family of singularities (28) in the complex s plane (n � 51).

The second set of equation (29) is a generalization of the singularities we derived for �
(n)
D

in [7]. In both formulae, one notes the occurrence of a second varying integer p2, leading
to a better understanding of the singularities of these integrals. Indeed with p2 running, the
linear ODE for �

(n)
H will automatically contain all the singularities of the linear ODEs for

�
(n−2)
H ,�

(n−4)
H , . . . , �

(n−2q)

H .
For n = 7, we have checked that the singularities specific to n = 7 (p2 = 0 in (28)

and (29)) also appear as the singularities of the linear ODE in floating point form (see
appendix D for details). For p2 = 1, part of the singularities appears in floating point form,
while for p2 = 2 (i.e. singularities of �

(3)
H ) no singularities appear in floating point form.

Similarly, for n = 8, we have checked that the singularities specific to n = 8 (p2 = 0 in
(28) and (29)) also appear as the singularities of the linear ODE in floating point form (see
appendix D for details). For p2 � 1, no singularities appear in floating point form.

Let us remark that some singularities may not appear in the floating point analysis when
the series is not long enough. For instance, for �

(7)
H (resp. �

(8)
H ) we have used 1250 (resp.

1200 terms) while the �
(7)
H and �

(8)
H linear ODEs need more than 20 000 terms. In these cases,

the number of terms used is not sufficient to encode the location of all the singularities. Note
however that this information can be obtained with less terms than the number required to get
the exact ODEs (i.e., the 20 000 terms).

Figure 1 shows the first family of singularities (28) displayed in the complex s plane close
to the unit circle. This figure clearly shows a quite rich structure for these set of points. This
figure looks like a network of nodal points linked together by (cardioid-like) curves that can,
at first sight, hardly be distinguished from arcs of circles.

Figure 1 shows some selected points (open squares) that can be seen to occur quite clearly
as some of these nodal points. The four open squares nearer to the axis Re(s) = 0 correspond
to the roots in the variable s of 1+3w +4w2 = 0. The four open squares at the left of the figure
correspond to the roots in the variable s of 1 + 8w + 20w2 + 15w3 + 4w4 = 0 and corresponding
to �

(5)
H . The four other singularities are hidden in the spray of points near s = ±i.
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Figure 2. First family of singularities (28) in the complex s plane far from the unit circle (n � 51).
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Figure 3. First and second families of singularities (28) and (29) in the complex s plane (n � 16).

Figure 2 shows the first family of singularities (28) far from the unit circle. Figure 3 shows
all the singularities altogether (first and second families) close to the unit s-circle. Finally,
figure 4 shows all the singularities together with (28) and (29) that are not so close to the unit
s-circle.
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Figure 4. First and second families of singularities (28) and (29) in the complex s plane far from
the unit circle (n � 16).

The accumulation of singularities one can see in figure 1 near s = i and s = −i seems to
confirm the statement made in Orrick et al [18] that these two points are two quite unpleasant
points for the susceptibility of the Ising model for which the series expansions are not even
asymptotically convergent.

Besides reproducing exactly the singularities of the linear ODE for �
(n)
H , it is remarkable

to see from formulae (28) and (29) how to track where each singularity polynomial comes
from. This allows one to understand how the singularities of the Ising like integrals Y (n) and
�

(n)
D (see [7]) and even the Nickelian singularities (1) emerge in these multiple integrals (8).

This comes simply from the partition (30) and the equivalent one in (28).

2.2. Singularities: from n-fold integrals to one-dimensional integrals

Consider for instance the singularities 1 − 7w + 5w2 − 4w3 = 0 occurring in �
(5)
H , which

are given by (28) for n = 5, p1 = 1 and p2 = 0. As far as conditions on the integration
angles (see (33)), this arises from a situation where two angles are equal and the three
others are equal. Recall that the �

(n)
D integrals are constructed with the following restrictions

on the angles:

φ1 = φ2 = · · · = φn−1 = φ, φn = −(n − 1)φ. (33)

One sees that a generalization of this model (33) is simply

φ1 = φ2 = · · · = φk,

φk+1 = φk+2 = · · · = φn, k = 0, 1, . . . , [n/2]. (34)

By the condition (6) on the angles, this writes kφ1 + (n − k)φn = 0 or, equivalently,
kφn + (n − k)φ1 = 0. This case is indeed one dimensional, with (denoting φ1 = φ)

φn = − (n − k)

k
φ +

2jπ

k
, j integer. (35)
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The model (33) is obviously given by (34) for k = 1. The Nickelian singularities are also
given by (34) for k = 0, but this time the underlying model is ‘zero dimensional’. The model
constructed along the same lines as in [7] corresponds to an integrand:

n−1∑
j=0

1

1 − xn
( 2πj

n

) . (36)

The Nickelian singularities arise as poles.
For k � 2, the singularities given by the model (34), which appear in (8), are thus given

neither by (1) nor by �
(n)
D . Consider one variable of integration such as (7), where the integrand

is
1

1 − xn−1(φ)x((n − 1)φ)
−→ 1

1 − xn−k(φ)xk(φn)
(37)

and denote by �
(n)
k such integrals (one then has �

(n)
1 = �

(n)
D ).

Fix n = 5 and k = 2. The constraint (35) on the angles reads

φ5 = −3

2
φ + jπ, j integer (38)

with one integration variable. The series of coefficients of �
(5)
2 is generated along the same

lines as for �
(n)
D (see appendix A). The Fuchsian linear differential equation is of order six

and this order is independent of the value of j in (38). The singularities of the linear ODE are
zeros of the following polynomials:

w(1 − 16w2)(1 + w)(1 − 3w + w2)(1 + 2w − 4w2)(1 + 4w + 8w2)(1 − 7w + 5w2 − 4w3).

(39)

We obtain singularities (from the last two polynomials) appearing for �
(5)
H and not occurring

for �
(5)
D .

The occurrence of the singularities 1 + 3w + 4w2 = 0 for (the linear ODE of) �
(5)
H but not

for (the linear ODE of) �
(5)
D is explained along similar lines. Note that these singularities are

common to (the linear ODE of) �
(3)
H ,�

(5)
H and �

(6)
H . The polynomial 1 + 3w + 4w2 appears

for (the linear ODE of) �
(5)
H from (28), namely,

T2p1(1/2w + 1) = Tn−2p2−2p1(1/2w − 1). (40)

The singularities 1 + 3w + 4w2 = 0 occur for �
(5)
H with n = 5, p1 = 1 and p2 = 1, but this

polynomial pops out also from (40) for n = 3, p1 = 1 and p2 = 0 which shows a situation
with three angles, two of them being equal. This is precisely the integrand in (7), i.e., in �

(3)
D .

In general, the polynomial that arises from (40) for given (n, p1, p2) will also be given
by (40) for (n − 2p2, p1, 0).

Consider now the case n = 6 and k = 2. This amounts to considering the n-fold integral
�

(6)
2 with

φ6 = −2φ + jπ, j integer. (41)

The results are dependent on the parity of the integer j . The series around w = 0 reads

�
(6)
2 = 1 + w6 + 32w8 ± w9 + 659w10 ± 1296w11 + 11 691w12 + · · · .

With the + sign in the series (42) and corresponding to j = 0, the linear differential equation
is of order five and the singularities are given by the zeros of the polynomials:

w(1 − 16w2)(1 − w)(1 + 2w)(1 − 9w2)(1 − 25w2)(1 + 3w + 4w2). (43)
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The results corresponding to the choice of a minus sign in the series (42), and corresponding
to j = 1 in (41), are obviously obtained by14 w → −w. We obtain the singularities 1 − 25w2

and 1 ± 3w + 4w2 = 0 occurring for (the linear ODE of) �
(6)
H but not for (the linear ODE of)

�
(6)
D .

Similarly, for n = 7 (k goes to 3), one obtains for k = 2 the singularities as zeros of the
following polynomial 1 + 8w + 15w2 −21w3 −60w4 + 16w5 + 96w6 + 64w7, which has indeed
been found numerically in the linear ODE search on a long series corresponding to �

(7)
H (see

appendix C).
We have the remarkable fact that the singularities of the linear ODE for the multiple

integral �(n)
H are given by a finite set of singularities of linear ODEs of a set of one-dimensional

integrals, namely, N(N + 1)/2 one-dimensional integrals, with N = [n/2]. For instance, the
singularities of the four-dimensional integral �

(5)
H identify with those of, at most, three one-

dimensional integrals. This appears, simply, from the pair of integers in (28) which read
(2p1, n− 2p2 − 2p1). For fixed n, when p2 varies, one sees that we are in fact considering all
the lower integer values n − 2p2. The same situation holds for (29). This identification leads,
obviously, to particular structures in the singularities for different n. This is what we show in
the following.

2.3. Singularity structures of n-fold integrals and particular sets of one-dimensional integrals

The Landau singularities given in appendix E are checked against the singularities of the linear
ODE for �

(n)
H (n = 3, . . . , 6) and are found to be identical. Assume that these formulae do

indeed reproduce all the singularities of the linear ODE for �
(n)
H , for any n. In this case, we can

check whether the singularities appearing at n = m also occur for n = m + 1, n = m + 2, . . . .

With the singularities obtained from these formulae up to n = 16, we infer the following
findings.

We have found that the singularities at order 2n will also be singularities at order 2n+ 2p,
where p is a positive integer. Similarly, the singularities at order 2n + 1 will also be present at
the following odd orders.

What is remarkable is the fact that the singularities at odd order also appear at even orders.
The rule is: all the singularities at odd order n also appear in the higher orders (odd and
even) except for the first (n − 1)/2 even orders. For instance, the singularities appearing at
n = 3 will occur for all n, except the first even order, i.e. 4. The singularities appearing at
n = 5 will occur for all n, except the first two even orders, i.e. 6 and 8.

The consequence of this embedding of the singularities is the occurrence of some
singularities at predefined orders. The singularity 1 + 2w = 0 is present at any order n.
The singularity 1 − 2w = 0 is present for any even order 2n. The singularity 1 + w = 0
occurs at any order n � 5. The singularity 1 − w = 0 occurs at any order n, except for n = 4.
All these singularities are Nickelian. The first non-Nickelian singularity 1 + 3w + 4w2 = 0
appears at all orders n, except for n = 4.

Moreover, we have given in [7] the Landau singularities for the (linear ODEs of the)
integrals �

(n)
D . These singularities have been found to be identical with the singularities of

the linear ODE for �
(n)
D obtained exactly up to n = 8 and modulo a prime up to n = 14. We

have seen that all the singularities of the linear ODE of �
(n)
D in the variable s lie in the annulus

defined by two concentric circles of radius
√

2 and 1/
√

2. The radii of the two concentric
circles are the roots, in the variable s, of the polynomial 1+3w +4w2 = 0, that is s2 + s +2 = 0

14 The last case for n = 6, i.e. k = 3, does not provide singularities other than Nickel’s.
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and 1 + s + 2s2 = 0. With the multiple integrals �
(n)
H , one sees that some of the singularities

are not confined to this annulus anymore.
Thanks to the Landau conditions, one can now understand this structure from the reduction

of the multiple integrals �
(n)
H to a set of one-dimensional integrals �

(n)
k as far as the location

of singularities is concerned. For k = 0, which corresponds to the Nickelian singularities, the
‘annulus’ is the unit circle. For k = 1 corresponding to the integrals �

(n)
D , one has the annulus

of radii
√

2 and its inverse. For each k, one expects the singularities to lie in an annulus with a
concentric structure. For these annuli the larger radius increases (smaller radius decreases) as
k increases. From the reduction of the singularities of �

(n)
H to these �

(n)
k , all the singularities

for fixed p1 = k in (28) and for fixed p1 = k in (29) will be confined to one annulus. For
instance for k = 2, all the singularities occurring in the linear ODE for �

(n)
k (i.e. for all n) or,

equivalently, all the singularities obtained by (28) for p1 = 1 and by (29) for p1 = 2 will be
confined to the annulus of radii 2.79 . . . and its inverse. This value is the root, in the variable
s, of 1−7w + 5w2 −4w3 = 0 occurring for �

(5)
H . For k = 3, one remarks that the annulus will

not be obtained from (28) which is restricted by 2p1, an even integer. In fact this is general.
The radii of the annuli are given by (28) for k even and by (29) for k odd. The root in the
variable s that will define the annulus occurs at odd order n given by 2k + 1. The radii of the
annulus are determined by the singularities which are furthest from the unit circle, among all
singularities obtained from (28) or (29) for a given p1.

The picture now is as follows. The singularities of the linear ODE for the integrals
�

(n)
H are partitioned into ‘families’ indexed by the integer k. The singularities for k = 0 are

Nickelian and lie on the unit circle, say, r0 = 1. The singularities for k = 1 lie in the annulus
r1 = √

2, 1/
√

2 (we discard from now on the smaller radius). The singularities for k = 2
will be confined in the annulus r2. The singularities for k = N will be in the annulus rN .
These concentric annuli are such that r0 < r2 < · · · < r2N and r1 < r3 < · · · < r2N+1 (with
r2k < r2k+1). As k grows, the radii of two neighbouring circles behave as r2k+2 − r2k → 0
and r2k+3 − r2k+1 → 0. This decrease is not enough to create an accumulation of circles.
We checked with k = 300 circles that the decrease goes as k−α with α < 1 preventing any
convergence. For n large these radii diverge: rN → ∞ when N → ∞.

Note that these families (i.e. the index k) come from the resolution of the Landau conditions
and from the reduction of the singularities for �

(n)
H to those of �

(n)
k (k = 0, 1, . . . , [n/2]). We

have no idea as to how these families can be seen directly from the multiple integrals �
(n)
H .

If the singularities for �
(n)
H happen to be identical with those occurring in the linear ODE for

χ(n), it may become important to see whether this picture persists and whether this picture is
showing another partition of the susceptibility χ instead of the known sum on χ(n).

Figures 5–7 show how the first family of singularities (28) in the s-complex plane is
decomposed according to the integer k in (34). Figure 5 shows singularities (28) for a given
odd value of k, namely k = 5 for any odd values of n up to 91. Figure 6 shows singularities
(28) for a given even value of k, namely k = 2 for any odd values of n up to 71. Figure 7
shows singularities (28) for a given even value of k, namely k = 6 for any even values of n

up to 80. The figures corresponding to the filtration of the singularities of the first family (28)
in terms of the integer k (previously displayed altogether with figures 1 and 2) deserve some
comments. First, one sees that the various ‘crescent’ corresponding to different values of k

are very similar. Secondly, one sees from figure 5 that the odd n, odd k ‘crescent’ break the
s ↔ −s symmetry (for even n, even k, the equations for the set of singularities are functions
of s2, see figure 7) in a quite dramatic way: the singularities in the ‘crescent’ of figure 5 all lie
only in the left half s-complex plane. Similarly, the singularities in the ‘crescent’ of figure 6
all lie in the right half s-complex plane.
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Figure 5. Crescent in the complex s plane given by (28): k = 5, n � 91, n odd.
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Figure 6. Crescent in the complex s plane given by (28): k = 2, n � 71, n odd.

Along this s ↔ −s symmetry line it is worth recalling that the low-temperature
susceptibility of the Ising model has this s ↔ −s symmetry (the low-temperature susceptibility
is a function of s2 or w2) but the high-temperature susceptibility breaks that s ↔ −s symmetry,
and this is also the case for the n-fold integral χ(n) with n odd. Our n-fold integrals (8) are
introduced to provide an educated guess as to the location of the singularities of χ(n). As far as
the location of singularities of χ(n) are concerned, it is not totally clear for n odd if the s ↔ −s

(resp. w ↔ −w) symmetry will not be partially restored on the global set of singularities with
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Figure 7. Crescent in the complex s plane given by (28): k = 6, n � 80, n even.

the occurrence for a singularity Pn(w) = 0 for a given value of n, of the opposite value for,
perhaps, a different value of n : Pm(−w) = 0.

Remark. Quite often, in this paper, we use (by abuse of language) the words ‘singularities of
an n-fold integral’ to describe a larger set of singularities, namely the singularities of the linear
ODEs that the n-fold integral satisfies. A rigorous study would require, for any ‘singularity’,
to perform the (differential Galois group and connection matrix) analysis we have performed
in [6]. It amounts to getting extremely long series, deduced from the obtained linear ODE,
that coincide with the series expansion of the n-fold integral we are interested in, and find
out if these series actually exhibit these singularities. With this tedious, but straightforward,
procedure we can extract the singularities of a specific n-fold integral among the larger set
of singularities of the corresponding linear differential equation. In view of the large number
of singularities we display in this paper, we have not performed such a systematic analysis
that would have been quite huge. Furthermore, it is important to note that this ‘connection
matrix’ approach [6] requires one to have the linear ODE of the n-fold integral. A knowledge
of the linear ODE modulo a prime is not sufficient. We could have performed this analysis
for �

(3)
H and �

(4)
H , but, in that case, we already have a deeper result [6] namely the connection

matrix analysis for χ(3) and χ(4), providing an understanding of the singularities of these
n-fold integrals themselves (in w and also in s).

Right now, the only singularities found for χ(n), other than Nickelian, are the quadratic
roots of 1 + 3w + 4w2 = 0 (i.e. the first annulus) which appear at all orders (except n = 4) for
�

(n)
H . Let us show, in the following, how this polynomial is ‘special’.

3. Towards a mathematical interpretation of the singularities

In a set of papers [19, 20], we have underlined the central role played by the elliptic
parametrization of the Ising model, in particular the role played by the second-order linear
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differential operators corresponding to the complete elliptic integral E (or K), and the
occurrence of an infinite number of modular curves [12], canonically associated with elliptic
curves. The deep link between the theory of elliptic curves and the theory of modular forms
is now well established [21].

Consequently, it may be interesting to seek ‘special values’ of the modulus k (singularities
of χ(n)) that might have a ‘physical meaning’, as well as a ‘mathematical interpretation’.

For that purpose, recall that the modular group requires one to introduce the elliptic nome,
defined in terms of the periods of the elliptic functions,

q = exp

(
−π

K(1 − k2)

K(k2)

)
= exp(iπτ) (44)

and the half-period ratio15 τ . We write the complete elliptic integral K as

K(k) = 2F1(1/2, 1/2; 1; k). (45)

Relations between K(k) evaluated at two different moduli can be found in, e.g., [22].

3.1. Some isogenies of elliptic curves seen as generators of the renormalization group

The arguments in K in these identities are related by the so-called, respectively, descending
Landen and ascending Landen (or Gauss) transformations:

k −→ k−1 = 1 − √
1 − k2

1 +
√

1 − k2
(46)

k −→ k1 = 2
√

k

1 + k
. (47)

These transformations (or correspondences [23, 24]) decrease or increase the modulus,
respectively. Iterating (46) or (47), one converges to k = 0 or k = 1, respectively. The
half-period ratio transforms through (46) and (47) as

τ → 2τ, τ → 1
2τ (48)

respectively. The real fixed points of the transformations (46) and (47) are k = 0 (the trivial
infinite or zero temperature points) and k = 1 (the ferromagnetic and antiferromagnetic critical
point of the square Ising model). In terms of the half-period ratio, this reads τ = ∞ and τ = 0,
respectively, which correspond to a degeneration of the elliptic parametrization into a rational
parametrization. In view of these fixed points, it is natural to identify the transformations (46)
or (47), and more generally any transformation16 τ → nτ or τ → τ/n (n integer), as exact
generators of the renormalization group of the two-dimensional Ising model17.

One does not need to restrict the analysis to the real fixed points of the transformations.
If one considers the Landen transformation (47) as an algebraic transformation of the complex
variable k and if one solves k2

1 − k2 = 0, one obtains

k(1 − k)(k2 + 3k + 4) = 0. (49)

The quadratic roots

k2 + 3k + 4 = 0 (50)

15 In the theory of modular forms q2 is also sometimes used instead of q. In number theory literature the half-period
ratio is taken as −iτ .
16 See relation (1.3) in [25].
17 A similar identification of these isogenies τ → nτ with exact generators of the renormalization group can be
introduced for any lattice model with an elliptic parametrization (Baxter model, . . .).
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are (up to a sign) fixed points of (47). We thus see the occurrence of additional non-
trivial complex selected values of the modulus k, beyond the well-known values k = 1, 0,∞
(corresponding to degeneration of the elliptic curve into a rational curve). Physically, these
well-known values k = 1, 0,∞ correspond to the critical Ising model (k = 1) and to (high–
low temperature) trivializations of the model (k = 0,∞).

3.2. Complex multiplication for elliptic curves as (complex) fixed points of the
renormalization group

We come now to our point. The first ‘unexpected’ singularities 1 + 3w + 4w2 = 0 found
[4, 5] for the Fuchsian linear differential equation of χ(3), and also in other n-fold integrals of
the Ising class [7], read in the variable k = s2

(k2 + 3k + 4)(4k2 + 3k + 1) = 0. (51)

The first polynomial18 corresponds to fixed points of the Landen transformation (see (49)).
In other words we see that the selected quadratic values 1 + 3w + 4w2 = 0, occurring in the
(high-temperature) susceptibility of the Ising model as the singularities of the three-particle
term χ(3), can be seen as fixed points of the renormalization group when extended to complex
values of the modulus k.

For elliptic curves in fields of characteristic zero, the only well-known selected set of
values for k corresponds to the values for which the elliptic curve has complex multiplication
[26]. Complex multiplication for elliptic curves corresponds to algebraic integer values
(integers in the case of the Heegner numbers, see appendix F) of the modular j -function,
which corresponds to Klein’s absolute invariant multiplied by (12)3 = 1728:

j (k) = 256
(1 − k2 + k4)3

k4(1 − k2)2
. (52)

A straightforward calculation of the elliptic nome (44) gives, for the polynomials (51),
respectively, an exact value for τ , the half-period ratio, as very simple quadratic numbers:

τ1 = ±3 + i
√

7

4
, τ2 = ±1 + i

√
7

2
(53)

These quadratic numbers actually correspond to complex multiplication of the elliptic curve
and for both one has j = (−15)3. These two quadratic numbers are such that 2τ1 ∓ 1 = τ2.
Let us focus on τ2 for which we can write

τ = 1 − 2

τ
. (54)

Taking into account the two modular group involutions τ → 1 − τ and τ → 1/τ , we find
that 1−2/τ is, up to the modular group, equivalent to τ/2. The quadratic relation τ 2−τ +2 = 0
thus amounts to looking at the fixed points of the Landen transformation τ → 2τ up to the
modular group. This is, in fact, a quite general statement. The complex multiplication values
can all be seen as fixed points, up to the modular group, of the generalizations of Landen
transformation, namely τ → nτ for n integer, τ 2 − τ + n = 0 or τ = 1 − n

τ
� nτ , where �

denotes the equivalence up to the modular group. Appendix G presents an alternative view
by considering the solutions as fixed points under Landen transformations of the modular
j -function.

In view of the remarkable mathematical (and physical) interpretation of the quadratic
values 1 + 3w + 4w2 = 0 in terms of complex multiplication for elliptic curves, or fixed points

18 Note that the two polynomials in (51) are related by the Kramers–Wannier duality k → 1/k.
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of the renormalization group, it is natural to see if such a ‘complex multiplication of elliptic
curves’ interpretation also exists for other singularities of χ(n), and as a first step for the
singularities of the linear differential equations of our n-fold integrals (8), that we expect to
be identical, or at least have some overlap, with the singularities of χ(n).

Noting that the modular j -function is a function of s2 or w2 (see (F.2) in appendix F) the
occurrence of 1 + 3w + 4w2 = 0 as a selected quadratic polynomial condition means, at the
same time, the occurrence of the other quadratic polynomial condition 1 − 3w + 4w2 = 0 (see
appendix F and appendix G.2).

Besides 1 − 3w + 4w2 = 0, we have found two other polynomial conditions which
correspond to remarkable integer values of the modular j -function. The singularities
1 − 8w2 = 0 correspond to j = (12)3 and τ = ±1 + i (see appendix F). They correspond to
‘Nickelian singularities’ for χ(8) (and thus �

(8)
H ) and to ‘non-Nickelian singularities’ for �

(10)
H .

Another polynomial condition is 1−32w2 = 0, which gives ‘non-Nickelian singularities’ that
begin to appear at n = 10 for �

(10)
H . These singularities correspond to the integer value of the

modular j -function, j = (66)3 and to τ = 2i or τ = −4/5 + 2i/5.

3.3. Beyond elliptic curves

Among the singularities of the linear ODE for �
(n)
H given in (12) and (13) or obtained from the

formula given in appendix E up to n = 15, we have found no other singularity identified with
selected algebraic values of the modular j -function corresponding to complex multiplication
for elliptic curves. Could it be that the (non-Nickelian) singularities (12) and (13), which do
not match with complex multiplication for elliptic curves, are actually remarkable selected
situations for mathematical structures more complex than elliptic curves? With these new
singularities, are we possibly exploring some remarkable ‘selected situations’ of some moduli
space of curves corresponding to pointed (marked) curves [27], instead of simple elliptic
curves [28]? In practice this just corresponds to considering a product of n times a rational,
or elliptic, curve minus some sets of remarkable codimension-one algebraic varieties [11],
xixj = 1, xixjxk = 1, hyperplanes xi = xj , . . . .

We try to fully understand the singularities of the n-fold integrals corresponding to χ(n),
that is to say particular n-fold integrals linked to the theory of elliptic curves. These n-
fold integrals are more involved than the (simpler) n-fold integrals introduced by Beukers,
Vasilyev [29, 30] and Sorokin [31, 32] or the Goncharov–Manin integrals [33] which occur
in some moduli space of curves [34, 35] simply corresponding to a product of rational curves
(CP1 × CP1 × · · · × CP1). An example of such integrals, linked19 to ζ(3), is displayed20 in
appendix H.

Let us close this section by noting that Heegner numbers and, more generally, complex
multiplication have already occurred in other contexts, even if the statement was not explicit. In
the framework of the construction of Liouville field theory, Gervais and Neveu have suggested
[41] new classes of critical statistical models, where, besides the well-known N th root of
unity situation, they found the following selected values of the multiplicative crossing t [42]:

t = eiπ(1+i
√

3)/2 = i e−π
√

3/2, (55)

t = eiπ(1+i) = −e−π . (56)

19 Note that ζ (or the polyzeta) function evaluated at integer values (ζ(3), ζ(5), . . .) do occur in our more involved
n-fold integrals, in particular in the representation of the connection matrices [6] of the differential Galois group of
the Fuchsian linear ODEs of χ(n).
20 These n-fold integrals [36–40] look almost the same as those we have introduced and analysed in the study of the
diagonal susceptibility of the Ising model [11] for which n th root of unity singularities occur.
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If one wants to see this multiplicative crossing as a modular nome, the two previous situations
actually correspond to selected values of the modular j -function namely j ((1+i

√
3)/2) = (0)3

for (55), and j (1 + i) = (12)3 for (56), which actually correspond to Heegner numbers and,
more generally, complex multiplication [26]. It is however important not to feed the confusion
already too prevalent in the literature, between a ‘temperature-like’ nome such as (44) and a
multiplicative crossing modular nome. In the Baxter model [43, 44], the first is denoted by q

and the second one by x. In fact one probably has not one but two modular groups taking place,
one acting on the ‘temperature-like’ nome q and the other acting on the multiplicative crossing
x. We will not go further along this quite speculative line which amounts to introducing elliptic
quantum groups [45] and elliptic gamma functions21 (generalization of theta functions22).

4. Conclusion

The ultimate goal of our ‘Ising class’ integrals is to get some insight into χ(n) and, hopefully,
into the susceptibility of the Ising model. For that purpose we have introduced n-fold integrals
(8) for which we expect the singularities of the corresponding linear ODE to overlap, as much
as possible, with the singularities of the linear ODE for χ(n). We have obtained the linear
differential equations for these n-fold integrals �

(n)
H , up to n = 4 and up to n = 6 modulo a

prime. From these exact results together with an exhaustive Landau singularity analysis, we
provided a quite complete description of the singularities of these linear ODEs.

From the Landau conditions, the singularity structures are explained. The singularities
corresponding to �

(n)
H are found to also occur at a higher predefined order p > n. With these

multiple integrals and the associated Landau conditions, we have been able to understand why
the simple integrals �

(n)
D have succeeded in reproducing the Nickelian singularities and the

new quadratic 1 + 3w + 4w2 = 0. These simple integrals appear to be ‘a first approximation’
to �

(n)
H . Other one-dimensional integrals pop up to account for the additional singularities not

occurring for �
(n)
D .

We have then a remarkable finding that the singularities for the multiple integrals can
be associated with the singularities for a finite number of one-dimensional integrals. If
the singularities, associated with these n-fold integrals (8), happen to be identical with (or
to overlap) the singularities associated with χ(n), it becomes important to understand this
mechanism for χ(n) themselves. If this mechanism of singularity embedding occurs for χ(n),
it might be explained by a Russian-doll structure for the same linear differential operators.
We know that the linear differential operator for χ(1) (respectively χ(2)) is ‘contained’ in
(rightdivides) the linear differential operator for χ(3) (respectively χ(4)), and furthermore we
even have direct sum decomposition properties. For �

(n)
H , it is not these mechanisms which

are at work.
Our primary goal in this study is to identify as many singularities as possible for χ(n).

The singularities of the ODEs associated with the �
(n)
H quantities correspond, in the Landau

equations framework, to leading pinch singularities (relatively to the singularities’ manifolds
D(φ,ψ) = 0). For the other quantities previously studied [7] which belong to the Ising class
integrals, the same feature holds.

21 Which can be seen [46] as ‘automorphic forms of degree 1’ when the Jacobi modular forms are ‘automorphic forms
of degree 0’ and are associated (up to simple semi-direct products) with SL(3, Z) instead of SL(2, Z)
22 The partition function of the Baxter model can be seen as a ratio and product of elliptic gamma functions and theta
functions. It is thus naturally expressed as a double infinite product. Similar double, and even triple, products appear
in correlation functions of the eight vertex model [47, 48].
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At this stage, the natural questions arising are: whether the scheme, from the Landau
singularities point of view, which holds for �

(n)
H , still holds for χ(n) and whether the singularities

of �
(n)
H can be considered as singularities of χ(n)?
From the Landau singularities viewpoint, the Fermionic determinant G(n)2 is going to

introduce new manifolds of singularities. When the Lagrange multipliers relative to the
singularities’ manifolds introduced by the Fermionic determinant are all set equal to zero,
one deals with the Landau equations of the �

(n)
H quantities. Thus, the singularities obtained

for the �
(n)
H quantities are also the solutions of the Landau equations of χ(n). However, this

feature does not mean that the singularities of the �
(n)
H quantities will necessarily appear as

the singularities of the χ(n) ODEs. Indeed some selection rules may take place and may
reject some of them. For instance, one expects singularities linked to

∏
yi to occur for the

Landau singularities of �
(n)
H . One finds that some selection rules exclude them. Our ‘educated

guess’ is that all the Landau singularities of �
(n)
H will be in the Landau singularities of χ(n),

however we do not exclude the possibility that χ(n) will have more Landau singularities than
�

(n)
H . Another ‘educated guess’ is that the Landau singularities of χ(n) will exhibit a similar

embedding to the one we found for �
(n)
H . This naturally raises the question already considered

in [8], of a ‘strong’ Russian-doll structure for the linear differential operators of the χ(n),
namely that the linear differential operator of χ(3) (resp. χ(4)) could right divide the linear
differential operator of χ(5) (resp. χ(6)) and so on.

Knowledge of the singularities will help in the search for the corresponding linear ODE.
For instance, we have 24 head polynomial ‘candidates’ for χ(5) and 19 ‘candidates’ for χ(6)

that can, from the outset, be put in front of the highest order derivative of the unknown linear
ODE. Furthermore, as shown for the linear ODE for �

(5)
H and �

(6)
H (and also from previous

ODEs), we know that the ‘cost’ (in terms of the number of series coefficients) will be much
less for a non-minimal order linear ODE than for the minimal order one.

Concerning the non-Nickelian singularities that the multiple integrals �
(n)
H have given,

we focused on 1 + 3w + 4w2 = 0 which actually occurs for the linear ODE of χ(3) or for
χ(3) seen as a function of s. As far as a mathematical interpretation is concerned, we have
shown that this quadratic polynomial condition corresponds to a selected situation for elliptic
curves namely the occurrence of complex multiplication. The other non-Nickelian (candidate)
singularities, (12) and (13), do not correspond to complex multiplication of elliptic curves.

Assuming that the non-Nickelian singularities obtained in the linear ODE for the integrals
(8) will be, at least, included in those for χ(n), various lines of thought are possible.

One may imagine that the decomposition of the susceptibility of the Ising model in terms
of an infinite sum of χ(n) is quite an artificial one with no deep mathematical meaning, i.e. χ(n)

are quite arbitrary n-fold integrals. In this case, no interpretation within the theory of elliptic
curves has to be looked for and the occurrence for 1 + 3w + 4w2 = 0 of complex multiplication
for elliptic curves would be just a coincidence.

Another option amounts to saying that one needs to introduce (motivic) mathematical
structures [36–40] beyond the theory of elliptic curves (moduli spaces, marked curves, . . .), and
beyond the elliptic curves of the Ising (or Baxter) model, to get a mathematical interpretation
of these singularities. We tend to favour the latter option.
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Appendix A. Series expansions of Φ(n)
H and of single integrals Φ(n)

k

We give in this appendix the series expansion that has been used for �
(n)
H . Expanding the

integrand of (8) in the variables xj , one obtains

�
(n)
H = 1

n!

n−1∏
j=1

∫ 2π

0

dφj

2π

∞∑
p=0

(2 − δp,0)

n∏
j=1

yjx
p

j . (A.1)

We make use of the yjx
p

j Fourier expansion [4, 5, 8]

yjx
p

j = wp

∞∑
k=−∞

w|k|a(p, |k|)Zk
j , Zj = exp(iφj ) (A.2)

where a(k, p) is a non-terminating hypergeometric function that reads (with m = k + p)

a(k, p) =
(

m

k

)
4F3

(
1 + m

2
,

1 + m

2
,

2 + m

2
,

2 + m

2
; 1 + k, 1 + p, 1 + m; 16w2

)
. (A.3)

We define 〈ρ〉 by

〈ρ〉 =
(

n∏
j=1

∫ 2π

0

dφj

2π

)
2πδ


 n∑

j=1

φj


 ρ (A.4)

where the angular constraint is introduced through the delta function that has the Fourier
expansion:

2πδ


 n∑

j=1

φj


 =

∞∑
k=−∞

(Z1Z2 · · ·Zn)
k. (A.5)

The integrals (A.1) become

�
(n)
H = 1

n!

∞∑
k=−∞

∞∑
p=0

(2 − δp,0)

〈
n∏

j=1

yjx
p

j Zk
j

〉
(A.6)

where the integration is over independent angles.
Using the Fourier expansion (A.2), one obtains the integration rule〈

yjx
p

j Zk
j

〉 = wp+|k|a(p, |k|) (A.7)

and finally

�
(n)
H = 1

n!

∞∑
k=0

∞∑
p=0

(2 − δk,0)(2 − δp,0)w
n(k+p)an(k, p). (A.8)

The derivation of the series expansions for the one-dimensional integrals (37) proceeds
along similar lines. The integrand of the integrals (37) is expanded in x

1

1 − xn−k(φ)xk(φn)
=

∞∑
p=0

xp(n−k)(φ)xpk(φn) (A.9)
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with

φn = −n − k

k
φ +

2πj

k
. (A.10)

Here, we use the Fourier expansion

xm = wm

∞∑
p=0

(2 − δp,0)w
pb(p,m) cos(pφ) (A.11)

where b(k, p) is a non-terminating hypergeometric function that reads (with m = k + p)

b(k, p) =
(

m − 1

k

)
4F3

(
1 + m

2
,

1 + m

2
,

2 + m

2
,
m

2
; 1 + k, 1 + p, 1 + m; 16w2

)
. (A.12)

The integration of the one-dimensional integrals (A.9) gives

�
(n)
k =

〈
1

1 − xn−k(φ)xk(φn)

〉
=

∞∑
p=0

∞∑
p1=0

∞∑
p2=0

(2 − δp1,0)(2 − δp2,0)

×wpn+p1+p2b(p1, p(n − k))b(p2, pk)I (p1, p2) (A.13)

with

I (p1, p2) = 1
2 (1 + δp1,0) cos(c), for p2(n − k) = kp1,

and

I (p1, p2) = 1

π

b2

b2 − p2
1

sin(bπ) cos(bπ − c), for p2(n − k) �= kp1,

where

b = n − k

k
p2, c = 2πj

k
p2. (A.14)

Appendix B. Linear differential equations of some Φ(n)
H

B.1. Linear ODE for �
(3)
H

The minimal order linear differential equation satisfied by �
(3)
H reads

5∑
n=0

an(w)
dn

dwn
F (w) = 0, (B.1)

where

a5(w) = (1 − w)(1 − 4w)4(1 + 4w)2(1 + 2w)(1 + 3w + 4w2)w3P5(w),

a4(w) = (1 − 4w)3(1 + 4w)w2P4(w),
(B.2)

a3(w) = −2(1 − 4w)2wP3(w), a2(w) = 2(1 − 4w)P2(w),

a1(w) = −8P1(w), a0(w) = −96P0(w),

with

P5(w) = −5 + 21w + 428w2 + 5364w3 − 82 416w4 − 299 504w5 + 714 944w6 + 3127 872w7

− 8220 672w8 − 25 858 048w9 − 7077 888w10 + 31 424 512w11 − 42 467 328w12

− 31 457 280w13 − 4194 304w14 + 4194 304w15,
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P4(w) = −40 + 7w + 5232w2 + 37 159w3 − 447 778w4 − 4947 500w5 + 19 493 448w6

+ 25 846 4112w7 + 49 920 5984w8 − 16 127 518 08w9 − 46 678 178 56w10

+ 13 827 459 072w11 + 67 078 416 384w12 + 62 392 041 472w13

− 81 535 369 216w14 − 116 835 483 648w15 + 124 662 054 912w16

+ 146 016 305 152w17 − 197 258 117 120w18 − 131 667 591 168w19

− 11 676 942 336w20 + 15 032 385 536w21,

P3(w) = 35 − 25w − 8683w2 − 10 149w3 + 619 246w4 + 5273 820w5 − 52 472 072w6

− 588 147 792w7 + 491 073 248w8 + 18 721 819 584w9 + 47 622 771 584w10

− 97 459 630 592w11 − 441 418 588 160w12 + 65 1003 559 936w13

+ 4694 018 588 672w14 + 4729 946 636 288w15 − 7193 770 328 064w16

− 11 814 519 701 504w17 + 7399 599 505 408w18 + 10 981 996 494 848w19

− 16 439 524 196 352w20 − 10 434 623 045 632w21

− 916 975 517 696w22 + 1125 281 431 552w23,

P2(w) = −10 + 101w + 11 088w2 − 42 855w3 − 1117 278w4 − 1918 516w5

+ 72 221 464w6 + 460 080 656w7 − 4999 186 016w8 − 33 474 428 224w9

+ 67 440 200 320w10 + 808 560 558 592w11 + 535 166 693 376w12

− 6771 457 933 312w13 − 7468 556 451 840w14 + 46 143 514 476 544w15

+ 91 488 863 125 504w16 − 75 107 733 078 016w17 − 239 438 663 778 304w18

+ 31 904 728 350 720w19 + 234 058 806 198 272w20 − 237 446 193 217 536w21

− 164 181 567 340 544w22 − 18 975 165 513 728w23 + 16 973 710 753 792w24,

P1(w) = −5 − 1142w + 8106w2 + 210 846w3 − 1070 376w4 − 7771 160w5

− 22 029 952w6 + 833 894 752w7 + 3334 510 976w8 − 39 736 449 920w9

− 156 101 859 328w10 + 663 306 718 208w11 + 2995 615 555 584w12

− 5033 154 314 240w13 − 26 250 785 980 416w14 + 28 618 066 755 584w15

+ 158 047 775 227 904w16 − 42 836 217 036 800w17 − 410 317 620 248 576w18

− 95 925 074 657 280w19 + 462 245 318 361 088w20 − 328 990 199 906 304w21

− 249 443 110 617 088w22 − 35 270 271 434 752w23 + 24 464 133 718 016w24,

P0(w) = −5 + 58w + 3234w2 − 18 994w3 − 229 330w4 + 1516w5 + 7017 504w6

+ 74 689 472w7 − 647 069 792w8 − 4260 373 952w9 + 15 887 163 648w10

+ 96 789 618 688w11 − 136 120 508 416w12 − 917 765 144 576w13

+ 877 996 605 440w14 + 5646 695 006 208w15 − 2888 887 697 408w16

− 16 785 155 817 472w17 − 5241 017 729 024w18 + 17 952 426 426 368w19

− 13 058 311 192 576w20 − 9329 742 708 736w21 − 1275 605 286 912w22

+ 824 633 720 832w23. (B.3)

B.2. Linear ODE for �
(4)
H

The minimal order linear differential equation satisfied by �
(4)
H reads (with x = 16w2)

6∑
n=0

an(x)
dn

dxn
F (x) = 0, (B.4)
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where

a6(x) = 64(x − 4)(1 − x)4x4P6(x), a5(x) = −128(1 − x)3x3P5(x),

a4(x) = 16(1 − x)2x2P4(x), a3(x) = −64(1 − x)xP3(x),

a2(x) = −4P2(x), a1(x) = −8P1(x), a0(x) = −3(1 − x)P0(x),

with

P6(x) = 128 + 2233x − 2847x2 + 3143x3 − 3601x4 + 144x5 − 64x6,

P5(x) = 3712 + 51 523x − 216 377x2 + 289 918x3 − 312 896x4 + 262 111x5

− 63 167x6 + 5512x7 − 896x8,

P4(x) = −121 856 − 1102 304x + 11 038 289x2 − 26 106 487x3 + 31 515 802x4

− 31 027 694x5 + 21 291 429x6 − 5166 011x7 + 410 160x8 − 67 776x9,

P3(x) = 38 144 + 10 604x − 4644 281x2 + 20 909 702x3 − 37 890 772x4 + 42 011 874x5

− 37 552 559x6 + 22 474 036x7 − 5465572x8 + 392 536x9 − 65 984x10,

P2(x) = 163 840 − 4162 688x − 18 120 152x2 + 277 110 610x3 − 880 048 289x4

+ 1357 147 519x5 − 1395 938 590x6 + 1141 353 668x7 − 621 323 833x8

+ 150 842 795x9 − 9676 720x10 + 1656 512x11,

P1(x) = −366 592 + 3113 752x + 17 465 700x2 − 120 658 444x3 + 240 321 805x4

− 259 277 988x5 + 219 951 814x6 − 142 314 304x7 + 42 534 921x8

− 2056 040x9 + 435 200x10,

P0(x) = 561 152 − 1496 400x − 13 171 575x2 + 30 840 556x3 − 24 381 198x4

+ 20 352 948x5 − 13 268 091x6 + 309 360x7 − 120 000x8.

B.3. Linear ODE modulo a prime for �
(5)
H

The linear differential equation of minimal order 17 satisfied by �
(5)
H is of the form

17∑
n=0

an(w)
dn

dwn
F(w) = 0, (B.5)

with

a17(w) = (1 − 4w)12(1 + 4w)9(1 − w)2(1 + w)(1 + 2w)(1 + 3w + 4w2)2(1 − 3w + w2)

× (1 + 2w − 4w2)(1 + 4w + 8w2)(1 − 7w + 5w2 − 4w3)(1 − w − 3w2 + 4w3)

× (1 + 8w + 20w2 + 15w3 + 4w4)w12P17(w),

a16(w) = w11(1 − 4w)11(1 + 4w)8(1 − w)(1 + 3w + 4w2)P16(w),

a15(w) = w10(1 − 4w)10(1 + 4w)7P15(w),

a14(w) = w9(1 − 4w)9(1 + 4w)6P14(w),

· · ·
where the 430 roots of P17(w) are apparent singularities. The degrees of these polynomials
Pn(w) are such that the degrees of ai(w) are decreasing as deg(ai+1(w)) = deg(ai(w)) + 1.
In fact, with 2208 terms we have found the ODE of �

((5)
H at order q = 28 using the following

ansatz for the linear ODE search (Dw denotes d/dw):
q∑

i=0

s(i)p(i)Dwi (B.6)
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with

s(i) = wα(−1+i)(1 − 16w2)α(−1+i)s
α(1+i−q)

0 (B.7)

where α(n) = min(0, n) and

s0 = (1 + w)(1 − w)(1 + 2w)(1 − 3w + w2)(1 + 2w − 4w2)(1 + 3w + 4w2)(1 + 4w + 8w2)

× (1 − 7w + 5w2 − 4w3)(1 − w − 3w2 + 4w3)(1 + 8w + 20w2 + 15w3 + 4w4)

with p(i) being the unknown polynomials.
The minimal order ODE is deduced from the set of linearly independent ODEs found at

order 28.

B.4. Linear ODE modulo a prime for �
(6)
H

The linear differential equation of minimal order 27 satisfied by �
(6)
H reads (with x = w2)

27∑
n=0

an(x)
dn

dxn
F (x) = 0, (B.8)

with

a27(x) = (1 − 16x)16(1 − 4x)3(1 − x)(1 − 25x)(1 − 9x)x21(1 − x + 16x2)

× (1 − 10x + 29x2)P27(x),

a26(x) = (1 − 16x)15(1 − 4x)2x20P26(x),
(B.9)

a25(x) = (1 − 16x)14(1 − 4x)x19P25(x),

a24(x) = (1 − 16x)13x18P24(x),

· · ·
where the 307 roots of P27(x) are apparent singularities. The degrees of the Pn(w) polynomials
are such that the degrees of ai(w) are decreasing as deg(ai+1(w)) = deg(ai(w)) + 1.

In fact, with 1838 terms we have found the linear ODE of �
(6)
H at order q = 42 using the

following ansatz for the linear ODE search (Dx denotes d/dx):
q∑

i=0

s(i)p(i)Dxi (B.10)

with

s(i) = xα(−1+i)(1 − 16x)α(−1+i)s
α(1+i−q)

0 (B.11)

where α(n) = min(0, n) and

s0 = (1 − 25x)(1 − 9x)(1 − 4x)(1 − x)(1 − x + 16x2)(1 − 10x + 29x2) (B.12)

with p(i) being the unknown polynomials.
The minimal order ODE is deduced from the set of linearly independent ODEs found at

order 42.

Appendix C. Singularities in the linear ODE for Φ(7)
H and Φ(8)

H

For �
(7)
H , we generated long series (1250 coefficients and 20 000 coefficients modulo primes),

unfortunately insufficient to obtain the corresponding linear ODE. However, by steadily
increasing the order q of the ODE (and consequently decreasing the degrees n of the
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polynomials in front of the derivatives), one may recognize, in floating point form, the
singularities of the ODE as the roots of the polynomial in front of the highest derivative.
A root is considered a singularity of the still unknown linear ODE, if as q increases (and
consequently decreasing n), it persists with more stabilized digits.

Using 1250 terms in the series for �
(7)
H , the following singularities are recognized:

(1 − 4w)(1 − 5w + 6w2 − w3)(1 + 2w − 8w2 − 8w3)(1 + 4w)w

(1 + 2w − w2 − w3)(1 − 3w + w2)(1 + 2w − 4w2)(1 + w)

(1 − 3w − 10w2 + 35w3 + 5w4 − 62w5 + 17w6 + 32w7 − 16w8)

(1 + 8w + 15w2 − 21w3 − 60w4 + 16w5 + 96w6 + 64w7)

(1 − 4w − 16w2 − 48w3 + 32w4 − 128w5)

(1 − 10w + 35w2 − 51w3 + 21w4 − 4w5)

(1 − 7w + 5w2 − 4w3)(1 + 7w + 26w2 + 7w3 + 4w4)

(1 + 8w + 20w2 + 15w3 + 4w4)

(1 + 12w + 54w2 + 112w3 + 105w4 + 35w5 + 4w6) = 0.

We will see in appendix E.3 that we missed the polynomials:

(1 + 3w + 4w2)(1 + 4w + 8w2)(1 − w)(1 + 2w)(1 − w − 3w2 + 4w3). (C.1)

Note that we have not seen with the precision of these calculations the occurrence of the
singularities of �

(3)
H .

With similar calculations using 1200 terms for �
(8)
H , the following singularities are

recognized:

(1 − 2w)(1 + 2w)(1 − 2w2)(1 − 4w)(1 − 4w + 2w2)(1 + 4w)

(1 + 4w + 2w2)(1 − 8w2)(1 − 3w)(1 − w)(1 + w)(1 + 3w)w

(1 − 26w2 + 242w4 − 960w6 + 1685w8 − 1138w10)

(1 − 10w2 + 32w4)(1 − 30w2 + 56w4 − 1312w6)

(1 − 6w + 10w2)(1 − 6w + 8w2 − 4w3)

(1 − 5w)(1 + 2w2)(1 + 5w)

(1 + 6w + 10w2)(1 + 6w + 8w2 + 4w3) = 0.

We will see in appendix E.3 that we missed the polynomials:

(1 − 3w + 4w2)(1 + 3w + 4w2)(1 − 10w2 + 29w4).

Note that the stabilized digits in these singularities can be as low as two digits.

Appendix D. Landau conditions and pinch singularities for Φ(n)
D and integrals of

∏
yj

Similarly to the integral representation (16) of �
(n)
H , one has

�
(n)
D =

∫ 2π

0

dφ

2π

∫ 2π

0

dψ

2π

√
(1 − 2w cos φ)2 − 4w2

D(φ,ψ)

√
(1 − 2w cos((n − 1)φ))2 − 4w2

D((n − 1)φ, (n − 1)ψ)
,

(D.1)

and
n∏

i=1

yi =
∫ 2π

0

n∏
i=1

dφi

2π

dψi

2π

1

D(φi, ψi)
δ

(
n∑

i=1

φi

)
. (D.2)
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For �
(n)
D the singularities of the associated ODEs are given as the solutions of

D(φ,ψ) = 0,

D((n − 1)φ, (n − 1)ψ) = 0,
(D.3)

α1 sin(φ) + α2 sin((n − 1)φ) = 0, with α1, α2 �= 0,

α1 sin(ψ) + α2 sin((n − 1)ψ) = 0

which are nothing but the Landau conditions restricted to pinch singularities of the singularity
manifolds D(φi, ψi) = 0. For23 ∏n

i=1 yi , the singularities of the associated ODEs can be
written as the solutions of

D(φi, ψi) = 0,

αi sin(φi) − αn sin(φn) = 0, i = 1, . . . , n − 1, with αi �= 0 (D.4)

αi sin(ψi) = 0, i = 1, . . . , N

which are also Landau conditions restricted to pinch singularities of the singularity manifolds
D(φi, ψi) = 0.

Appendix E. The singularities from Landau conditions

In this appendix, we give further details corresponding to (28) and (29) obtained from the
Landau conditions:

1 − 2w(cos(φj ) + cos(ψj )) = 0, j = 1, . . . , n, (E.1)

αj sin(φj ) − αn sin(φn) = 0, j = 1, . . . , n − 1, (E.2)

αj sin(ψj ) − αn sin(ψn) = 0, j = 1, . . . , n − 1. (E.3)

and
n∑

j=1

φj = 0,

n∑
j=1

ψj = 0 mod 2π. (E.4)

We solve these equations for the values (zero or not) of sin(φn) and sin(ψn). For
sin(φn) = sin(ψn) = 0, the case is simple and gives w = ±1/4.

E.1. The case sin(φn) �= 0, sin(ψn) = 0

In this case, there are k angles ψj = π and the remaining ones are ψj = 0. By (17), the
integer k should be even, k = 2p. From (E.1), we obtain and define24

cos(φ+) = 1

2w
+ 1, cos(φ−) = 1

2w
− 1. (E.5)

One obtains 2p angles φj = ±φ+ and n − 2p angles φj = ±φ−. The angles φj are then
partitioned in sets of p1 angles +φ+, (2p − p1) angles −φ+, (n − 2p − p2) angles +φ−

and p2 angles −φ−. By (E.4), one gets (2p − 2p1)φ
+ = (n − 2p − 2p2)φ

−. Note that

23 The
∏

yi or
∏

y2
i integrands are similar as far as the location of the singularities of the corresponding ODEs is

concerned.
24 Note that φ+ and φ− (which correspond to ψj = π and ψj = 0, respectively) are not on the same footing: indeed,
the number of φ+ angles must be even, while the number of φ− angles depends on the parity of n.



Singularities of n-fold integrals 11741

some manipulations on the indices lead to cos(|2p|φ+) = cos(|n − 2p − 2k|φ−) and thus
|2p|φ+ = ±|n − 2p − 2k|φ−, allowing us to write

T2p(1/2w + 1) = Tn−2p−2k(1/2w − 1),

0 � p � [n/2], 0 � k � [n/2] − p,
(E.6)

where Tn(x) is the Chebyshev polynomial of the first kind.
One obtains the same results for the case sin(φn) = 0 and sin(ψn) �= 0.

E.2. The case sin(φn) �= 0, sin(ψn) �= 0

In this case, by (E.2) and (E.3), we have sin(φj ) �= 0 and sin(ψj ) �= 0. Equations (E.1) and
(E.3) become

cos(ψj ) = 1 − 2w cos(φj ), j = 1, . . . , n, (E.7)

sin(ψj ) = sin(φj )
sin(ψn)

sin(φn)
, j = 1, . . . , n. (E.8)

Squaring both sides of both equations and summing, one obtains

(cos(φj ) − cos(φn))(cos(φj ) − cos(φ0)) = 0, (E.9)

where we have defined

cos(φ0) = 4w − cos(φn)

1 − 4w cos(φn)
. (E.10)

The angles φj are then partitioned into four sets ±φ0 and ±φn. Note that a similar
condition (E.9) occurs for the angles ψj which are partitioned likewise. Writing (E.7) and
(E.8) for j = 0 and j = n and with the conditions (17), the equations become in terms of
Chebyshev polynomials25:

Tn1(z) − Tn2

(
4w − z

1 − 4wz

)
= 0,

Tn1

(
1

2w
− z

)
− Tn2

(
1

2w
− 4w − z

1 − 4wz

)
= 0, (E.11)

Un2−1(z)Un1−1

(
1

2w
− 4w − z

1 − 4wz

)
− Un2−1

(
1

2w
− z

)
Un1−1

(
4w − z

1 − 4wz

)
= 0

with

n1 = p, n2 = n − p − 2k, (E.12)

0 � p � n, 0 � k � [(n − p)/2]. (E.13)

At this step, some computational remarks are in order. In the course of deriving (E.11),
some manipulations such as dividing by a term have been done. Rigorously, the solutions
that come from (E.11) have to be checked against this point. We have found that as they are
written, the formulae are ‘safe’ from this perspective, except of the following. For n = p/2
(fixing k = 0 for convenience), thus for n even, the formulae (E.11) give a common curve
which reads

w = 1

2

z

1 + z2
. (E.14)

25 Note that in equation (E.11) one must realize that one takes the numerator of these rational expressions.



11742 S Boukraa et al

This relation comes from the condition cos(φ0) = cos(φn) in (E.10) which makes (E.9) a
perfect square. We have checked that considering this condition at the outset, i.e. (E.7) and
(E.8), yields no solution.

E.3. Landau singularities

We can write the singularities obtained from (E.6) as

n = 3, (1 − 4w)(1 − w)(1 + 3w + 4w2) = 0,

n = 4, (1 − 16w2)(1 − 4w2) = 0,

n = 5, (1 − 4w)(1 − w)(1 + 3w + 4w2)(1 − 3w + w2)(1 − 7w + 5w2 − 4w3)

× (1 + 8w + 20w2 + 15w3 + 4w4) = 0,

n = 6, (1 − 16w2)(1 − 4w2)(1 − w2)(1 − 25w2)(1 − 9w2)

×(1 + 3w + 4w2)(1 − 3w + 4w2) = 0.

The solutions of (E.11) include some of the solutions of (E.6). We give in the following
only those not occurring in (E.6):

n = 3, w(1 + 4w)(1 + 2w) = 0,

n = 4, w = 0,

n = 5, w(1 + 4w)(1 + w)(1 + 2w)(1 + 2w − 4w2)(1 + 4w + 8w2)

× (1 − w − 3w2 + 4w3) = 0,

n = 6, w(1 − 10w2 + 29w4) = 0.

All these singularities can be identified with the singularities occurring in the linear ODE
for �

(n)
H (n = 3, . . . , 6).

For n = 7 and n = 8, the solutions of (E.6) and (E.11) can be identified with the
singularities given in appendix C and obtained in floating point form. They also give

n = 7, (1 + 3w + 4w2)(1 + 4w + 8w2)(1 − w)(1 + 2w)(1 − w − 3w2 + 4w3) = 0,

n = 8, (1 − 3w + 4w2)(1 + 3w + 4w2)(1 − 10w2 + 29w4) = 0,

which have not been found in the series with the currently available number of terms.

Appendix F. Heegner numbers and other selected values of the modular j-function

The nine Heegner numbers [51] and their associated modular j -function j (τ ) yield the
following conditions in the variable w:

j (1 + i) = (12)3, (1 − 8w2)(1 − 16w2 − 8w4) = 0,

j (1 + i
√

2) = (20)3, (1 − 16w2 − 64w4)

× (1 − 32w2 + 368w4 − 1792w6 − 64w8) = 0,

j

(
1 + i

√
3

2

)
= (0)3, 1 − 16w2 + 16w4 = 0,

j

(
1 + i

√
7

2

)
= (−15)3, (1 − 31w2 + 256w4)

(
1 − 16w2 + w4

)
× (1 + 3w + 4w2)(1 − 3w + 4w2) = 0,
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j

(
1 + i

√
11

2

)
= (−32)3, P3 = 1 − 48w2 + 816w4 − 5632w6

+ 45 824w8 − 536 576w10 + 4096w12 = 0,

and

j

(
1 + i

√
d

2

)
= (−m)3, Pd = 0 with Pd = P3 + N(1 − 16w2)w8,

with the following values for the triplet (d,m,N):

(19, 96, 851 968), (43, 960, 884 703 232),

(67, 5280, 147 197 919 232), (163, 640 320, 262 537 412 640 735 232).

Beyond Heegner numbers there are many other selected quadratic values [52, 53] of j ,
for instance

j = −4096(15 + 7
√

5)3 = j

(
1 + i

√
35

2

)
(F.1)

which is known [51] to be one of the 18 numbers having class number h(−d) = 2, and which
corresponds to the quadratic relation −134 217 728 000 + 117 964 800j + j 2 = 0. Recalling
the expression of the modular j -function in term of the variable w,

j = (1 − 16w2 + 16w4)3

(1 − 16w2)w8
, (F.2)

this quadratic relation in j becomes a quite involved polynomial expression that we have not
seen emerging as the singularities of (the linear ODEs of) our n-fold integrals.

Appendix G. Landen transformations and the modular j-function

In this appendix the modular j -function (52) will be seen, alternatively, as a function of the
modulus k, and thus denoted by j [k], or as a function of the half-period ratio τ , and thus
denoted by j (τ ). The modular function called the j -function when seen as a function of the
modulus k reads

j [k] = 256
(1 − k2 + k4)3

k4(1 − k2)2
. (G.1)

Increasing the modulus by (47), the modular function j (k) becomes

j [k1] = j1[k] = 16
(1 + 14k2 + k4)3

k2(1 − k2)4
. (G.2)

Iterating this procedure once more one obtains

j1[k1] = j2[k] = 4
(1 + 60k + 134k2 + 60k3 + k4)3

k(1 + k)2(1 − k)8
. (G.3)

The decrease of the modulus by (46) gives

j [k−1] = j−1[k] = 16
(16 − 16k2 + k4)3

k8(1 − k2)
. (G.4)

The next iterations (the cube of (47) and the square of (46)) gives algebraic expressions
for j [k].
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It is easy to get a representation of the Landen transformation on the modular j -functions
by the elimination of the modulus k between (52) and (G.2). One obtains the well-known
fundamental modular curve [49, 50]

1(j, j1) = j 2j 2
1 − (j + j1)

(
j 2 + 1487jj1 + j 2

1

)
+ 3153(16j 2 − 4027jj1 + 16j 2

1

)
− 12306(j + j1) + 8309 = 0. (G.5)

This algebraic curve is symmetric in j and j1. We will obtain the same modular curve
(G.5) by the elimination of the modulus k between (G.2) and (G.3) or between (G.1) and
(G.4). The two modular functions j and j1 are invariant by the SL(2, Z) modular group and,
in particular, transformation τ → 1/τ . As a consequence, the transformation τ → 2τ , and its
inverse τ → τ/2, has to be on the same footing in the modular curve representation (G.5) for
the Landen and Gauss transformations.

Similarly, one can easily find the (genus zero) modular curve 2 obtained by the
elimination of the modulus k between (G.1) and (G.3) (or between (G.4) and (G.4)), which
corresponds to the transformation τ → 4τ and, at the same time, to its inverse τ → τ/4. This
last algebraic curve is, of course, also a modular curve.

G.1. Fixed points of these modular representations in terms of j -function

Transformations such as j → j1, or j → j2, corresponding to the previous modular curves,
are not (one-to-one) mappings, they are called ‘correspondence’ by Veselov [23, 24]. In order
to look at the fixed points of the Landen, Gauss transformations (or their iterates) seen as
transformations on complex variables, within the framework of (modular) representations on
the modular j -functions, we write, respectively, 1(j, j1 = j) = 0 and 2(j, j2 = j) = 0

The ‘fixed points’ 1(j, j1 = j) = 0 of the (modular) ‘correspondence’ (G.5) are
j = j1 = (12)3 or (20)3 or (−15)3.

The ‘fixed points’ 2(j, j2 = j) = 0 of modular curve corresponding to the square of
the Landen transformation are j = j2 = (66)3 or 2(30)3 or (−15)3 or the solutions26 of
j 2 + 191 025j − 121 287 375 = 0, namely,

j = −33

(
1 +

√
5

2

)2

(5 + 4
√

5)3 = j

(
τ = 1 + i

√
15

2

)
(G.6)

and its Galois conjugate (change
√

5 into −√
5).

G.2. Alternative approach to fixed points of the Landen transformation and its iterates

In order to get the ‘fixed points’ of the Landen transformation, let us impose that (G.1)
and (G.2) are actually equal, thus j [k] = j [k1]. This yields the condition (already seen to
correspond to the χ(3)-singularities 1 + 3w + 4w2 = 0)

(4k2 + 3k + 1)(k2 + 3k + 4) = 0 (G.7)

together with

(4k2 − 3k + 1)(k2 − 3k + 4)

(k2 + 2k − 1)(k2 − 2k − 1)(k2 + 1) = 0.
(G.8)

The first two polynomial conditions in (G.8), (4k2−3k+1)(k2−3k+4) = 0, correspond to
the Heegner number associated with the integer value j = (−15)3. The next two polynomial

26 This corresponds to a value of j of class number h(−d) = 2, see (58) in [51].
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conditions in (G.8), k2 ± 2k − 1 = 0, correspond to the Heegner number associated with the
integer value j = (20)3. The last polynomial condition in (G.8), 1 + k2 = 0, corresponds to
the Heegner number associated with the integer value j = (12)3.

Similarly, in order to get the ‘fixed points’ of the square of the Landen transformation, let
us require that (G.1) and (G.3) are actually equal: j [k] = j [k2]. This yields the conditions
(G.7) (fixed points of the Landen transformation) together with

(k2 − 6k + 1)(k4 + 14k2 + 1) = 0 (G.9)

(k4 − 6k3 + 17k2 + 36k + 16)(16k4 + 36k3 + 17k2 − 6k + 1) = 0. (G.10)

In (G.9) the condition 1+14k2 +k4 = 0 (or 1−16w2 +256w4 = 0) corresponds to j = 2(30)3

which is not a Heegner number but actually corresponds to complex multiplication. The
condition k2 − 6k + 1 = 0 in (G.9) (or 1 − 32w2 = 0) corresponds to j = (66)3 which is not
a Heegner number either but actually corresponds to complex multiplication. Note that both
polynomials under the Landen transformation (47) give respectively j = (0)3 and j = (12)3,
i.e. Heegner numbers. The last two (self-dual) conditions in (G.10) read in w

1 − 9w + 17w2 + 24w3 + 6w4 = 0,

1 + 9w + 17w2 − 24w3 + 6w4 = 0
(G.11)

and yield as selected value [52, 53] of j , the quadratic roots −121 287 375+191 025j +j 2 = 0,
already given in (G.6).

One more step can be performed writing the condition j [k−1] = j [k2]. One gets the
conditions

(k2 + 3k + 4)2(4k2 − 3k + 1)(k2 + 2k − 1)(k2 + 1) = 0

previously obtained and corresponding to j = (−15)3, 203, 123, together with

k6 − 27k5 + 363k4 + 423k3 − 168k2 − 144k + 64 = 0,

k6 + 17k5 + 143k4 + 203k3 + 52k2 + 32k + 64 = 0
(G.12)

corresponding, respectively, to the two cubic relations on j :

1566 028 350 940 383 − 58 682 638 134j + 39 491 307j 2 + j 3 = 0,

12 771 880 859 375 − 5151 296 875j + 3491 750j 2 + j 3 = 0.
(G.13)

These conditions (G.13) yield quite involved polynomial expressions in the variable w that
we have not seen emerging as the singularities of (the linear ODEs of) our n-fold integrals (or
Y (n) or �(n) either).

Appendix H. Linear differential operators for the Sorokin integrals

Recall the occurrence of zeta functions evaluated at integer values in many n-fold integrals
corresponding to particle physics, field theory, . . . . For instance, the following integral
[33, 36] is associated with ζ(3):

In(z) =
∫ 1

0
du dv dw

(1 − u)nun(1 − v)nvn(1 − w)nwn

(1 − uv)n+1(z − uvw)n+1
. (H.1)

From the series expansion of this holonomic n-fold integral, we have obtained the
corresponding order four Fuchsian linear differential equation. On these linear differential
operators the ‘logarithmic’ nature of these integrals becomes clear.
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The fully integrated series expansion of the triple integral (H.1) is given by (where x
denotes 1/z)

In(x) =
∞∑
i=0

xn+i+1 2(n + 1)4(n + i + 1)

(i + 1)3(2 + 2n + i)

× 3F2(n + 1, n + i + 1, n + i + 1; 2n + i + 2, 2n + i + 2; 1).

The triple integral In(x) is a solution of the order four Fuchsian linear differential operator
(Dx denotes d/dx)

Ln = Dx4 +
2(3x − 1)

(x − 1)x
Dx3 +

(7x2 + (n2 + n − 5)x − 2n(n + 1))

(x − 1)2x2
Dx2

+
(x2 + 2n(n + 1))

(x − 1)2x3
Dx +

n(n + 1)((n2 + n + 1)x + (n − 1)(n + 2))

(x − 1)2x4

which has the following factorization:

Ln =
(

Dx +
d ln(A1)

dx

)(
Dx +

d ln(A2)

dx

)(
Dx +

d ln(A3)

dx

)(
Dx +

d ln(A4)

dx

)
(H.2)

where

A1 = −(n − 1) ln(x) + 2 ln(x − 1) + ln(Pn),

A2 = (n + 1) ln(x) − (n − 1) ln(x − 1) − ln(Pn) + ln(Qn),

A3 = −n ln(x) + (n + 1) ln(x − 1) + ln(Pn) − ln(Qn),

A4 = n ln(x) − ln(Pn),

and where Pn and Qn are the polynomials in x of degree n. They are the polynomial solutions
behaving as · · · + xn for a system of coupled differential equations (P (m)

n (resp. Q(m)
n ) denotes

the m th derivative of Pn(x) (resp. Qn(x)) with respect to x):

(x − 1)2x2P (4)
n − 2(2(x − 1)n − 3x + 1)(x − 1)xP (3)

n

+ ((2x − 1)(3x − 4)n2 − (12x2 − 13x + 2)n + (7x − 5)x)P (2)
n

− (2(2x − 3)n3 − 2(3x − 1)n2 + 2(2x − 1)n − x)P (1)
n + n4Pn = 0,

−(x − 1)xPnQ
(2)
n + (2(x − 1)xP (1)

n + (1 − x + 2n)Pn)Q
(1)
n

− (2(x − 1)xP (2)
n − 2((x − 2)n − x)P (1)

n + n2Pn)Qn = 0.
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